
Position Paper
Operating System and Runtime Software for Exascale Systems

Enhanced Resource Management Support for Failure Management
Morris Jette and Danny Auble, SchedMD LLC

<jette, da>@schedmd.com

From a workload management perspective, failure management currently means recognizing a
failure after it occurs and restarting the affected job(s), typically using a previously created
checkpoint. The user is typically responsible for creating checkpoint images and either
allocating extra resources to replace failed components or restarting with a new job allocation.
This mode of operation has a severe impact upon application performance if failures are
common, which is inevitable on exascale system. We propose developing a collaborative
approach to minimize the impact of failures upon applications including active communications
between the applications and the resource manager.

Much research has been conducted in the area of failure prediction with some success. This
information can be used to drain resources of new work, but a more active approach would be
beneficial for jobs currently using those resources. We envision the ideal response to both
observed and anticipated failures will notify the application via Remote Procedure Call (RPC) of
its details including effected resource, probability of failure, time frame, etc. This information will
permit a response best suited to each application at that particular point in its execution. A
mechanism for the application to notify the resource manager of failures that it has observed
could also be valuable, although some research will be required to assess the accuracy of user
reported failures.

A few resource managers support the ability to add resources to running jobs, but we are aware
of none which maintain hot spare resources that can be made quickly available to running jobs
in response to failed resources. The typical mode of operation today is for each long-running job
to allocate extra resources for its exclusive use. This is wasteful of resources and lacks a
mechanism to replenish the job’s pool of hot spare resources as needed. We believe a better
solution is for the resource manager to maintain a common pool of hot spare resources to be
made available to applications via RPCs and replenished as needed. In response to an
application’s request for additional resources, the resource manager may refuse the request,
provide replacement resources immediate or provide them at some point at specific time the
future.

Extending a running job’s time limit is widely supported by resource managers, but generally
only available to system administrators or privileged users. However granting regular users the
ability to increase a job’s time limit in response to failed resources should prove extremely
valuable. The addition time may reflect the application’s addition execution time with fewer
resources than originally allocated and/or the delay incurred waiting for replacement resources.

Challenges addressed: The estimated mean time between failure on exascale systems are
well under one hour and well under the execution time of many applications. Effective utilization

of exascale computers requires a robust execution environment including the resource
management infrastructure to support jobs surviving multiple failures, which is currently not
available.

A key part of this infrastructure is a communication channel between the application and
resource manager to better manage failures. Communications are anticipated to include:

1. Notification of the resource manager by the application of observed failures.
2. Notification of the application by the resource manager when resource failures are

observed or anticipated.
3. Application request for resources to replace failed components in its current allocation.
4. Application request to the resource manager for an extended time limit, typically

reflecting the delay induced loss of resources.

Maturity: The resource manager plays a key role in failure management for exascale systems
including the allocation of resources to jobs, enforcing time limits, and knowledge about known
and anticipated resource failures. These responsibilities place the resource manager in a key
role for failure management. The work described here is only one component of a
comprehensive strategy to manage failures, which must include also work on applications and
checkpoint/restart mechanisms.

Uniqueness: The importance of failure management is particularly acute on exascale systems
due to job run times well in excess of the system’s mean time to failure. These techniques could
also be useful for systems with lower failure rates, but providing critical services.

Novelty: The work currently underway to improve fault tolerance with the Coordinated
Infrastructure for Fault Tolerance Systems (CiFTS) initiative and at the application level are
unquestionably valuable. However these efforts have largely excluded the resource manager,
which we believe severely impacts their utility at exascale.

Applicability: While failure management is of particular concern to exascale computing, it
would be of value to smaller systems with long running jobs and computers operating in hostile
environments.

Effort: The effort to effectively explore this approach would be on the order of 2.5 person
months. This would represent the effort to more fully explore the benefits of failure management
in a resource manager and architect the infrastructure, but exclude any development work.

